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PascalT

Beloved Baby Bell is Born

 

 

 Here are the  first seven rows (starting from row 0) of the famous binomial triangle:

 

 

The numbers in a given row are obtained by adding the two entries of the row above it.

%hide
%r

mpluszs <- function(x,z=1) x+(z/2)*(z+sqrt(ẑ2+8*x))

P <- function(n=10,col4="red") {
    require(scatterplot3d)
    M <- expand.grid(x=0:n,y=0:n)
    M[M$x+M$y > n,] <- 0
    x <- M$x
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    y <- M$y
    z <- choose(x+y,y)
    cols <- rep("black",length(x))
    cols[(x+y)%%2 > 0] <- "white"
    cols[(x+y)%%4 == 0] <- col4
    s3d <- scatterplot3d(x,y,z,type="h",color=cols,zlab="z = (x+y) 
choose y")
    s3d$points3d(0:n,0:n,rep(0,n+1),type="l",col="grey")
    x <- 0:(0.5+n-sqrt(1+8*n)/2)
    y <- mpluszs(x,z=1)
    z <- rep(0,length(x))
    s3d$points3d(x,y,z,type="l",lty="dotted",col="green")
    x <- 1:n
    y <- mpluszs(x,z=-1)
    z <- rep(0,length(x))
    s3d$points3d(x,y,z,type="l",lty="dotted",col="green")
}

# For png plotting with sage.
Pplot <- 
function(n=10,filename="myplot.png",width=480,height=480,...) {
   png(filename=filename,width=width,height=height,...)
   P(n)
   .null <- dev.off()
}

pbc <- function(n=10,col1="blue",col2="dark red") {
    x <- 0:n
    p <- choose(n,x)
    plot(x,p,type="h",lwd=2,col=col1,ylab="p")
    points(x,p,pch=16,cex=2,col=col2)
}

ppp <- 
function(L=c(2,4,6,10,20),cols=c("orange","red","green","blue","black"))
 {
    nn <- L[length(L)]
    x <- ((0:nn)-nn/2)/sqrt(nn/4)
    p <- choose(nn,(0:nn))*sqrt(nn)/2̂(nn+1)
    
plot(x,p,type="p",lwd=2,col=cols[length(L)],xlim=c(-2,2),xlab="Standard
 Units",
           ylab="(prob.) / (Std.Unit)",main="Binomial Coefficients")
    for (j in 1:(length(L)-1)) {
        n <- L[j]
        x <- (0:n - n/2)/sqrt(n/4)
        p <- choose(n, 0:n)*sqrt(n)/2̂(n+1)
        points(x,p,pch=16,cex=2,col=cols[j])
        }
}
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PPP <-
function(L=c(2,4,6,10,20),cols=c("orange","red","green","blue","black"),

          width=480,height=480,...)
{
 png(filename="myplot.png",width=width,height=height)
 ppp(L,cols)
 curve(dnorm,-2,2,add=TRUE)
 .null <- dev.off()
}

Pline <- 
function(n=10,filename="myplot.png",width=480,height=480,...) {
   png(filename=filename,width=width,height=height,...)
   pbc(n)
   .null <- dev.off()
} 

       

 Plot the sixth line of the binomial triangle. It looks "bell-shapped"

(Note: the R code for producing the plots is hidden in the previous cell.

You need to have the 'scatterplot3d' package installed)

%r
Pline(6) 
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Notice that the entries are symmetrical about the middle  showing the maximum

value of  for the sixth row.

Now look at the plot of the 10th row. Again the numbers are symmetrical about

the middle  and monotonically decreasing from the maximum

value of  in the center. Notice also that the vertical and the horizontal scales

for these plots are very different. The plot for the numbers on the 6th row has

1 vertical unit approximately equal to 5 horizontal units. The plot below for the

numbers of the 10th row has 1 vertical unit equal to more than 10 horizontal units.

%r
Pline(10) 

6/2 = 3

20

10/2 = 5

250
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If we plot all the numbers on the first few rows of the binomial triangle with a common vertical

scale, we see clearly one of the hidden secrets of the binomial triangle.

The three plots below show the first 20, 40 and 100 rows of the binomial triangle by 

displaying the triangle (rotated  ccw) on the xy plane and the numbers on the z axis.

All the rows are plotted. The even rows alternate between red and black and the odd rows

are shown in white and so they are mostly invisible in the first and second plots.

%r
Pplot(20,width=700) 

Loading required package: scatterplot3d

120o
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%r
Pplot(40,width=700,height=650) 
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%r
Pplot(100,width=700,height=650) 
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Do you see a bell curve getting skinnier  and skinnier and running away to infinity along the line  ?

In order to find the equation of THE BELL CURVE that produces the running away skinny curves

in the pictures above, as just location scale deformations of a single curve ,

we need to think about the numbers on the binomial triangle.

 

Consider the number  located on the 6th row, 2nd colunm (both rows and columns starting from 0)

of the binomial triangle. This number is denoted by its position on the triangle as .

The construction rule for the binomial triangle says,

5 = 4

5 = X(4)

15

� ��
�

� � = 15 = 5 + 10 = � � + � �
6 5 5
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In general . With the top 

and the boundaries , all the entries in the triangle are then

uniquely specified by the basic construction rule.

 

If we define  and , then it is easy to check that,

satisfy the boundary conditions and the basic recurrence rule and thus, provide a formula 

for the general entry of the triangle on row , colunm .

 

Counting the paths from the top

 

The entries in the triangle COUNT the total number of paths from the top to that position.

Consider walking from the top steping down one line at a time either to the right  or to the left 

until reaching the given  destination. Clearly to arrive to position  we must

follow a path with exactly  steps (to be able to reach down to the nth row),

and with exactly  steps to the right, and thus also exactly  steps to the left (to be able

to reach the kth column). 

 

It is clear that there are exactly two paths from  to . These are,

 arriving from the left (i.e. from ) and 

arriving from the right (i.e. from ). It then follows from the basic construction rule,

that  is the total number of paths from the top, since that number is the total number

of paths arriving from the left (i.e. ) plus the total number of paths arriving
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from the right (i.e. ). 

 

We therefore conclude that  is the total number of binary sequences of length 

with exactly  ones (and thus, with exactly  zeros). Further more, by specifying a sequence

of  binary digits by the location of its ones (e.g. ) we conclude that there

are as many binary sequences of length  with  ones as there are subsets with 

elements from a set of  elements, i.e. exactly .

 

 

The probability of k heads in n tosses of a fair coin

 

If we toss a fair coin  times there are  possible outcomes corresponding to the total

number of binary sequences of length . If the coin has equal probability for heads and for tails

and we assume the tosses independent, then each of the  outcomes has the same chance

. Thus, by the addition rule for mutually exclusive outcomes, the probability of observing

exactly  heads in the  tosses is just the proportion of outcomes with exactly  heads, i.e.,

 

 

where  with  taking the value  if the jth toss

is heads and the value  if tails. Think of  as the sum of  draws with replacement

from a box containing two tickets one ticket with the number  the other ticket with the number .

We now have a probabilistic interpretation to the entries of the binomial triangle:

. It follows from this that the sum of the entries of the nth rown of

the binomial triangle must be .
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It is also evident from the binomial triangle that the even numbered rows with entries 

are symmetric about the center value  and this center value is the maximum value of

the row.

 

The probability of n heads in 2n tosses of a fair coin

 

We show the following proposition:

 

This shows that the more we toss a fair coin the more unlikely it is to get 50% of the tosses

to be heads!. More over the probability of observing 50% heads decreases to 0 like .

 

Proof: 

Let .  Notice that  for  and

thus, the sequence  is strictly decreasing towards 0. A simple integration 

by parts shows that,   from where it follows that .

From  we deduce that  and therefore

 also.

 

From the recursion given by the integration by parts we get,
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Multiplying the numerator and the denominator inside the square brackets by  we obtain,

from where we deduce that,

 

Stirling's Approximation

The  is strictly increasing. Hence,

adding over ,

The antiderivative of  is  and computing the integrals we obtain,

This suggests to compare  with the in between term, .

We will show that the differences  are decreasing and bounded and

therefore they form a convergence sequence. Just notice that,

the term within the square brackets follows from noticing that,

t = var('t')
assume(abs(t)<1)
taylor(log(1+t),t,0,10) 

       

taylor((1/2)*log((1+t)/(1-t)),t,0,10) 
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Hence,

which shows that,

where we have compared the series with the geometric series with . 

Adding over  we get,

and then,

The sequence  is thus strictly decreasing and bounded and therefore it must converge to some limit .

We conclude that,

or equivalently,

meaning that the ratio of the two sides converges to 1 as  increases.

The positive constant  is obtained by using our previous result

Using (the found above) Stirling's approximation (with the constant ) to replace

the factorials, we get,

 

From where we deduce that  obtaining the standard Stirling's approximation,

var('C')
sol = solve(2/exp(C) == 1/sqrt(pi),C)
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[sol[0], sol[0].rhs().n()] 

       

The Bell Curve

The sum of  draws from a 01 box is expected to be half the number of draws give or take 

a typical fluctuation (a standard deviation) of the order of . When we look at the

chances of heads in terms of typical fluctuations from  we discover the bell curve.

 

We show that for any real value ,

where we take  to be its closest integer when the expression is not an integer.

If we let  to denote  in standard units (i.e. standard deviations from the expected ) then the above is,

Notice that this shows that the bell curve is a density of probability: Probability per unit length. The observed heads 

is always an integer from . When  we have  in standard units,

and when  (the next possible value) gives . Thus, the size of the step

in standard units is . The above statement says that the probability of observing the number of heads that is

 standard deviations from the expected  divided by the step of size  approaches the bell curve.

Proof:

Now use Stirling's approximation for the factorials to show, that the above is,
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 we obtain,

Erasing the  from the exponents (the terms go to 1) and combining the terms raised to the power  we get,

pp = plot(exp(-x̂2/2)/sqrt(2*pi),(x,-4,4))
pp.show(figsize=(6,3)) 

       

Now look how the rows of the binomial triangle are getting closer and closer

to the bell curve when we plot them with Standard Units on the horizontal and

Probability Density Units (i.e. probability per std. unit) on the vertical. 

%r
PPP(L=c(2,4,6,10,20),cols=c("orange","red","green","blue","black")) 
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The picture shows the central values of  when  is  and 20. Different colors 

correspond to different values for . At  we can see the colors sorted by increasing 

approaching the peak of the bell curve from below.

� �n
k * 2,4,6,10

* 4 = 0 *
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So YES! when using the correct scales of standard units for the horizontal and probability density

units for the vertical we realize that the binomial coefficients approach THE BELL CURVE,

 

Thanks:

Nothing here is original. I have borrowed freely from Herb Robbins, from Feller vol I, from Timothy Gower's blog.

Many thanks also to the creators of sage, TeX, R, and the open source online community.
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